NUMERICAL RADIUS OF PRODUCTS OF SPECIAL MATRICES

Mohammad Alakhrass

Abstract

The purpose of this note is to present upper bounds estimations for the numerical radius of a products and Hadamard products of special matrices, including sectorial and accretivedissipative matrices.

Mathematics subject classification (2020): 15A45, 15A60, 47A12, 47A30.
Keywords and phrases: Numerical radius, sectorial matrices, accretive-dissipative matrices, matrix inequalities.

REFERENCES

[1] M. Alakhrass, On sectorial matrices and their inequalities, Linear Algebra and its Applications 617, 179-189 (2021).
[2] M. Alakhrass, M. Sababheh, Lieb functions and sectorial matrices, Linear Algebra Appl. 586, 308-324 (2020).
[3] M. Alakhrass, A note on sectorial matrices, Linear Multilinear Algebra, vol. 68, no. 11, pp. 22282238, 2020.
[4] Yu. M. Arlinski, A. B. Popov, On sectorial matrices, Linear Algebra Appl. 2003; 370: 133-146.
[5] T. Ando, K. OkUbo, Induced norms of the Schur multiplier operator, Linear Algebra Appl. 147 (1991) 181-199.
[6] R. Bhatia, Matrix Analysis, Springer, Berlin (1997).
[7] R. A. Horn and C. A. Johnson, Topics in Matrix Analysis, Cambridge, England: Cambridge University Press, 1991.
[8] K. E. Gustafson, D. K. M. Rao, Numerical Range, Springer, New York, 1997.
[9] H.-L. GaU, P. Y. WU, Numerical radius of Hadamard product of matrices, Linear Algebra Appl. 504 (2016) 292-308.
[10] S. Drury, M. Lin, Singular value inequalities for matrices with numerical ranges in a sector, Oper. Matrices 8 (2014) 1143-1148.
[11] M. Lin, Some inequalities for sector matrices, Operators and Matrices 10 (2016) 915-921.
[12] M. Lin, F. Sun, A property of geometric mean of accretive operators, Linear Multilinear Algebra $\mathbf{6 5}$ (3), 433-437 (2017).
[13] F. ZHANG, A matrix decomposition and its applications, Linear Multilinear Algebra 10 (2015) 20332042.

