ON SEVERAL INEQUALITIES RELATED TO CONVEX FUNCTIONS

Nicuşor Minculete

Abstract. In this paper, for a function $f: \mathscr{X} \rightarrow \mathbb{R}$, we introduce the following expression: $\Delta_{\lambda}(f)(x, y):=\lambda f(x)+(1-\lambda) f(y)-f(\lambda x+(1-\lambda) y)$, where $x, y \in \mathscr{X}$ and $\lambda \in \mathbb{R}$. The purpose of this article is to characterize this expression, by finding various estimates of it. We also give some characterizations of $\Delta_{\lambda}(f)(x, y)$ when function f is convex, which prove refinements of Young's inequality. Finally, we give several inequalities in a normed space.

Mathematics subject classification (2020): 26A51, 26D15.
Keywords and phrases: Convex function, Young's inequality, Jensen's inequality.

REFERENCES

[1] S. S. Dragomir, Bounds for the Normalized Jensen Functional, Bull. Austral. Math. Soc. 74, 3 (2006), 471-478.
[2] S. S. Dragomir, J. E. Pečarić and L. E. Persson, Bounds for the Normalized Jensen Functional, Acta Math. Hungar. 70, 1-2 (1996), 129-143.
[3] A. El Farissi, Z. Latreuch and B. Balaidi, Hadamard Type Inequalities For Near Convex Functions, Gazeta Matematică Seria A 28, 107 (2010), 9-14.
[4] S. Furuichi, On refined Young inequalities and reverse inequalities, J. Math. Ineq. 5, 1 (2011), 2131.
[5] S. Furuichi and H. R. Moradi, Advances in mathematical inequalities, De Gruyter, Berlin, Boston, 2020.
[6] G. H. Hardy, J. E. Litlewood and G. Pólya, Inequalities, Cambridge Mathematical Library, 1988.
[7] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl. 361, 1 (2010), 262-269.
[8] M. Krnić, N. LovričEvić and J. Pečarić, Jessen's functional, its properties and applications, An. Şt. Univ. Ovidius Constanţa 20, 1 (2012), 225-248.
[9] M. Krnić, N. Lovričević and J. PečArić, On the properties of McShane's functional and their applications, Period. Math. Hung. 66, 2 (2013), 159-180.
[10] M. Krnić, N. Lovričević, J. Pečarić and J. Perić, Superadditivity and monotonicity of the Jensen-type functionals, Element, Zagreb, 2015.
[11] W. Liao, J. Wu and J. Zhao, New version of reverse Young and Heinz mean inequalities with the Kantorovich constant, Taiwanese. J. Math. 19, 2 (2015), 467-479.
[12] N. Minculete, A result about Young's inequality and several applications, Sci. Magna 7, 1 (2011), 61-68.
[13] N. Minculete and F.-C. Mitroi, Fejér type inequalities, Aust. J. Math. Anal. Appl. 9, 1 (2012), 1-8.
[14] D. S. Mitrinović, J. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht/Boston/London, 1993.
[15] F.-C. Mitroi, About the precision in Jensen-Steffensen inequality, Annals of the University of Craiova, Mathematics and Computer Science Series 37, 3 (2010), 73-84.
[16] C. P. Niculescu and L.-E. Persson, Convex Functions and Their Applications. A Contemporary Approach, Springer-Verlag, New York, 2006.
[17] J. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Mathematics in Science and Engineering, 1992.
[18] A. Raţiu and N. Minculete, On Several Bounds for Types of Angular Distances, Mathematics 10, 18 (2022), 1-10.
[19] M. Sababheh and M. S. Moslehian, Advanced refinements of Young and Heinz inequalities, J. Number Theory 172, 1 (2017), 178-199.
[20] G. Zuo, G. Shi and M. Fujir, Refined Young inequality with Kantorovich constant, J. Math. Inequal. 5, 4 (2011), 551-556.

