REPRESENTATIONS OF ELEMENT AS SUM OF PRIMITIVE ROOT AND LEHMER NUMBER IN \mathbb{Z}_{p}

Bo Zhang, Jiankang Wang, Yongli Su and Zhefeng Xu*

Abstract. Let p be an odd prime and \mathbb{Z}_{p} the residue class ring modulo p. In this paper, we study representations of any element of \mathbb{Z}_{p} as the sum of a Lehmer number and a primitive root in \mathbb{Z}_{p}, and give an explicit inequality better than asymptotic formula for the number of representations. From this inequality, we obtained that each element of \mathbb{Z}_{p} can be represented as the sum of a Lehmer number and a primitive root for $p>2.5 \times 10^{14}$. Moreover, using the algorithm we provided, we examined all the cases when $p<10^{6}$ by computer. We also analyzed the time complexity of the algorithm and illustrated that it is extremely difficult to verify all the cases up to the bound 2.5×10^{14}, and conjectured that any given element $n \in \mathbb{Z}_{p}$ can be represented as the sum of a Lehmer number and a primitive root in \mathbb{Z}_{p} for all primes p except $2,3,5,7,11$, 19, 31.
Mathematics subject classification (2020): 11A07, 11N69, 11L05.
Keywords and phrases: Residue class ring, Lehmer number, primitive root, representation, numerical computation.

REFERENCES

[1] J. Cilleruelo, Ana Zumalacárregui, An additive problem in finite fields with powers of elements of large multiplicative order, Rev. Mat. Comput., 27 (2014) 501-508.
[2] S. D. Cohen, G. L. Mullen, Primitive elements in Costas arrays, Appl. Algebra Eng. Comm. Comput, 2 (1991) 45-53.
[3] S. D. Cohen, W. P. Zhang, Sums of two exact powers, Finite Fields Appl., 8 (2002) 471-477.
[4] S. D. Cohen, T. Trudgain, Lehmer numbers and primitive roots modulo a prime, J. Number Theory, 203 (2019) 68-79.
[5] C. V. Garcia, A note on an additive problem with powers of a primitive root, Bol. Soc. Mat. Mexicana, 11 (2005) 1-4.
[6] M. Z. Garaev, Ka-Lam Kueh, Distribution of special sequences modulo a large prime, Int. J. Math. Math. Sci., 50 (2003) 3189-3194.
[7] R. K. Guy, Unsolved Problems in Number Theory, 3rd. edn, Springer-Verlag, New York, 2004.
[8] S. W. Golomb, Algebraic constructions for costas arrays, J. Comb. Theory, 37 (1984) 13-21.
[9] S. R. Louboutin, J. Rivat, A. Sarkozy, On a Problem of D. H. Lehmer, Proc. Amer. Math. Soc., 135 (2007) 969-975.
[10] Y. M. Lu, Y. Yi, Partitions involving D. H. Lehmer numbers, Monatsh. Math., 159 (2010) 45-58.
[11] I. E. Shparlinski, On a generalisation of a Lehmer problem, Math. Z., 263 (2009) 619-631.
[12] I. E. Shparlinski, A. Winterhof, Partitions into two Lehmer numbers, Monatsh. Math., 160 (2010) 429-441.
[13] M. VÂJÂItu, A. Zaharescu, Differences between powers of a primitive root, Int. J. Math. Math. Sci. 29 (2002), 325-331.
[14] J. P. WANG, On Golomb's conjectures, Sci. Sinica Ser. A 31 (1988) 152-161.
[15] Z. F. Xu, W. P. Zhang, On a problem of D. H. Lehmer over short intervals, J. Math. Anal. Appl., 320 (2006) 756-770.
[16] W. P. Zhang, A problem of D. H. Lehmer and its generalization (II), Compositio Math., 91 (1994) 47-56.

