BOUNDS FOR THE α-ADJACENCY ENERGY OF A GRAPH

Rezwan Ul Shaban, Muhammad Imran and Hilal A. Ganie

Abstract. For the adjacency matrix $A(G)$ and diagonal matrix of the vertex degrees $D(G)$ of a simple graph G, the $A_{\alpha}(G)$ matrix is the convex combinations of $D(G)$ and $A(G)$, and is defined as $A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G)$, for $0 \leqslant \alpha \leqslant 1$. Let $\rho_{1} \geqslant \rho_{2} \geqslant \ldots \geqslant \rho_{n}$ be the eigenvalues of $A_{\alpha}(G)$ (which we call α-adjacency eigenvalues of the graph G). The generalized adjacency energy also called α-adjacency energy of the graph G is defined as $E^{A_{\alpha}}(G)=\sum_{i=1}^{n}\left|\rho_{i}-\alpha \bar{d}\right|$, where $\bar{d}=\frac{2 m}{n}$ is the average vertex degree, m is the size and n is the order of G. The α-adjacency energy of a graph G merges the theory of energy (adjacency energy) and the signless Laplacian energy, as $E^{A_{0}}(G)=\mathscr{E}(G)$ and $2 E^{A^{\frac{1}{2}}}(G)=Q E(G)$, where $\mathscr{E}(G)$ is the energy and $Q E(G)$ is the signless Laplacian energy of G. In this paper, we obtain some new upper and lower bounds for the generalized adjacency energy of a graph, in terms of different graph parameters like the vertex covering number, the Zagreb index, the number of edges, the number of vertices, etc. We characterize the extremal graphs attained these bounds.
Mathematics subject classification (2020): 05C50, 05C12, 15A18.
Keywords and phrases: Adjacency matrix, Laplacian (signless Laplacian) matrix, regular graph, α adjacency matrix, α-adjacency energy.

REFERENCES

[1] N. Abreua, D. M. Cardoso, I. Gutman, E. A. Martins and M. Robbiano, Bounds for the signless Laplacian energy, Linear Algebra Appl. 435 (2011) 2365-2374.
[2] C. Adiga, R. Balakrishnan and W. So, The skew energy of a digraph, Linear Algebra Appl. 432 (2010) 1825-1835.
[3] D. M. Cvetković, M. Doob and H. Sachs, Spectra of graphs. Theory and application, Pure and Applied Mathematics, 87, Academic Press, Inc. New York, 1980.
[4] K. FAN, Maximum properties and inequalities for the eigenvalues of completely continuous operators, Proc. Natl. Acad. Sci. 37 (1951) 760-766.
[5] W. Fulton, Eigenvalues, invariant factors, highest weights and Schubert calculus, Bull. Amer. Math. Soc. (NS) 37 (2000) 209-249.
[6] H. A. Ganie, B. A. Chat and S. PirZada, On the signless Laplacian energy of a graph and energy of line graph, Linear Algebra Appl. 544 (2018) 306-324.
[7] H. A. Ganie, U. Samee and S. Pirzada, On graph energy, maximum degree and vertex covering number, Le Matematiche, vol. LXXIV (2019)-issue I, 163-172.
[8] Haiyan Gou and Bo Zhou, On the α spectral radius of graphs, arXiv:1805.03245[math.CO].
[9] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz. Graz 103 (1978) 1-22.
[10] I. Gutman and B. ZHOU, Laplacian energy of a graph, Linear Algebra Appl. 414 (2006) 29-37.
[11] I. Gutman, B. Furtula and S. B. Bozkurt, On Randić energy, Linear Algebra Appl. 442 (2014) 50-57.
[12] R. Horn and C. Johnson, Matrix Analysis, Cambridge University press, 1985.
[13] G. Indulal, I. Gutman and A. Vijayakumar, On distance energy of graphs, MATCH Commun. Math. Comput. Chem. 60 (2008) 461-472.
[14] H. Kober, On the arithmetic and geometric means and the Holder inequality, Proc. Am. Math. Soc. 59, (1958) 452-459.
[15] X. Li, Y. Shi and I. Gutman, Graph Energy, Springer, New York, 2012.
[16] S. Liu, K. C. Das, S. Sun and J. Shu, On the least eigenvalue of A_{α}-matrix of graphs, Linear Algebra Appl. 586 (2020), 347-376.
[17] S. Liu, K. C. Das and J. Shu, On the eigenvalues of A_{α}-matrix of graphs, Discrete Math. 343 (8) (2020) 111917.
[18] V. Nikiforov, Beyond graph energy: norms of graphs and matrices, Linear Algebra Appl. 506 (2016) 82-138.
[19] V. Nikiforov, Merging the A and Q spectral theories, Appl. Anal. Discrete Math. 11 (2017) 18-107.
[20] V. Nikiforov, The energy of graphs and matrices, J. Math. Appl. 326 (2007) 1472-1475.
[21] I. Peña and J. Rada, Energy of digraphs, Linear Multilinear Algebra, 56 (2008), 565-579.
[22] S. Pirzada, An Introduction to Graph Theory, Universities Press, Orient BlackSwan, Hyderabad (2012).
[23] S. Pirzada and H. A. Ganie, On the Laplacian eigenvalues of a graph and Laplacian energy, Linear Algebra Appl. 486 (2015) 454-468.
[24] S. Pirzada, B. A. Rather, H. A. Ganie and R. Shaban, On α-adjacency energy of graphs and Zagreb index, AKCE International Journal of Graphs and Combinatorics, doi:10.1080/09728600.2021.1917973.
[25] L. WANG and X. Ma, Bounds of graph energy in terms of vertex cover number, Linear Algebra Appl. 517 (2017), 207-216.

