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SPLITTING INEQUALITIES FOR DIFFERENCES OF EXPONENTIALS

VITALII MARCHENKO

Abstract. The paper is focused on two-sided splitting inequalities for differences of complex
exponentials ∣∣∣keit f (n)

∣∣∣ , k ∈ N, t ∈ R,

for large n ∈ N, where { f (n)}n=1 is real unbounded sequence clustering with appropriate
speed. Moreover, it is shown that if {en}n∈N

is a Riesz basis of a Hilbert space H , then for any
k � 1 the system

{
ken

}
n∈N

is complete, minimal but not uniformly minimal in H . Also some
properties of systems of functions of real argument t ,

{
keit f (n)

}
n∈N

,

where k ∈ N∪{0} , are discussed.
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