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Abstract. In this paper, we introduce a new integral transform, namely, Sumudu transform and
we apply the transform to investigate the Hyers-Ulam stability, Hyers-Ulam-Rassias stability,
Mittag-Leffler-Hyers-Ulam stability and Mittag-Leffler-Hyers-Ulam-Rassias stability of second
order linear differential equations.
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