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TWO–STEP MINIMIZATION APPROACH TO SOBOLEV–TYPE

INEQUALITY WITH BOUNDED POTENTIAL IN 1D

VINA APRILIANI, MASATO KIMURA ∗ AND HIROSHI OHTSUKA

Abstract. We present a new method to determine the best constant of the Sobolev-type embed-
ding in one dimension with a norm including a bounded inhomogeneous potential term. This
problem is closely connected to the Green function of the Schrödinger operator with inhomoge-
neous potential. A minimization problem of a Rayleigh-type quotient in a Sobolev space gives
the best constant of the Sobolev embedding. We decompose the minimization problem into two
sub-minimization problems and show that the Green function provides the minimizer of the first
minimization problem. Then, it enables us to derive a new precise estimate of the best constant
and function for inhomogeneous bounded potential cases. As applications, we give some ex-
amples of the inhomogeneous potential whose best constant and function of the Sobolev-type
embedding are explicitly determined.
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