FUNDAMENTAL SOLUTIONS TO SOME ELLIPTIC EQUATIONS WITH DISCONTINUOUS SENIOR COEFFICIENTS AND AN INEQUALITY FOR THESE SOLUTIONS

A. G. RAMM

Abstract. Let \(Lu := \nabla \cdot (a(x)\nabla u) = -\delta(x - y) \) in \(\mathbb{R}^3 \), \(0 < c_1 \leq a(x) \leq c_2 \), \(a(x) \) is a piecewise-smooth function with the discontinuity surface \(S \) which is smooth. It is proved that in an neighborhood of \(S \) the behavior of the function \(u \) is given by the formula:

\[
 u(x, y) = \begin{cases}
 (4\pi a_+)^{-1}[r_{xy}^{-1} + bR^{-1}], & y_3 > 0, \\
 (4\pi a_-)^{-1}[r_{xy}^{-1} - bR^{-1}], & y_3 < 0.
 \end{cases} \tag{*}
\]

Here the local coordinate system is chosen in which the origin lies on \(S \), the plane \(x_3 = 0 \) is tangent to \(S \), \(a_+(a_-) \) is the limiting value of \(a(x) \) on \(S \) from the half-space \(x_3 > 0 \), \(x_3 < 0 \), \(r_{xy} := |x - y| \), \(R := \sqrt{\rho^2 + (|x_3| + |y_3|)^2} \), \(\rho := \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} \), \(b := (a_+ - a_-)/(a_+ + a_-) \). If \(S \) is the plane \(x_3 = 0 \) and \(a(x) = a_+ \) in \(x_3 > 0 \), \(a(x) = a_- \) in \(x_3 < 0 \), then \((*)\) is the global formula for \(u \) in \(\mathbb{R}^3 \). Inequality for the fundamental solution for small and large \(|x - y| \) follows from formula \((*)\).

Key words and phrases: Fundamental solutions, elliptic equations, discontinuous coefficients, inverse problems.

REFERENCES

