OPERATOR FUNCTIONS IMPLYING GENERALIZED FURUTA INEQUALITY

Takayuki Furuta, Takeaki Yamazaki and Masahiro Yanagida

Abstract. As further extensions of the main result in [11], we show the following result.
Let \(A \geq B \geq 0 \) with \(A > 0 \). For each \(t \in [0,1] \) and \(p \geq t \), the following (i) and (ii) hold for a fixed real number \(q \) and they are mutually equivalent:
(i) if \(q \geq 0 \), then
\[
G_{p,q,t}(A, B, r, s) = A^{\frac{t}{p-t}} \{ A^{\frac{t}{q-t}} (A^{\frac{t}{r-t}} B^p A^{\frac{t}{s-t}}) A^{\frac{t}{q-t}} \}^{\frac{q-t}{p-t}} A^{\frac{p-t}{p-t}}
\]
is decreasing for \(r \geq t \) and \(s \geq 1 \) such that \((p-t)s \geq q-t \).
(ii) if \(p \geq q \), then
\[
G_{p,q,t}(A, B, r, s) = A^{\frac{t}{p-t}} \{ A^{\frac{t}{q-t}} (A^{\frac{t}{r-t}} B^p A^{\frac{t}{s-t}}) A^{\frac{t}{q-t}} \}^{\frac{q-t}{p-t}} A^{\frac{p-t}{p-t}}
\]
is decreasing for \(s \geq 1 \) and \(r \geq \max \{t, t-q\} \).

Key words and phrases: Löwner-Heinz inequality, Furuta inequality, chaotic order.

REFERENCES

[6] T. Furuta, If \(A \geq B \geq 0 \) assures \((B^r A^p B^r)^{1/q} \geq B^{(p+2r)/q} \) for \(r \geq 0 \), \(p \geq 0 \), \(q \geq 1 \) with \((1+2r)q \geq p+2r \), Proc. Amer. Math. Soc. 101 (1987), 85–88.