ON A CONJECTURE ON THE CLOSEST NORMAL MATRIX

ANDERS BARRLUND

Abstract. Let \(A \) be a complex \(n \times n \) matrix and let \(\mathcal{N}_n \) be the set of normal \(n \times n \) matrices. A conjecture is that

\[
\| A - \mathcal{N}_n \|_F^2 \leq \frac{n - 1}{n} \text{dep}^2(A),
\]

where \(\text{dep}^2(A) = \| A \|_F^2 - \sum_{i=1}^{n} \lambda_i^2(A) \) and \(\lambda_i(A), i = 1, \ldots, n \) are the eigenvalues of \(A \). We prove that the conjecture is correct for all even \(n \) and for \(n = 3, 5, 7 \). However, for the dimensions, \(n = 3, 5, 6, 7 \), and presumably also other problem dimensions it is possible to derive sharper bounds. We also prove a bound for odd \(n \) which converges to the bound in the conjecture when \(n \) tends to infinity. The main idea in the proofs is to use LP problems with constraints based on different ways to approximate \(A \) with normal matrices.

Key words and phrases: Normal matrix, LP-problem.

REFERENCES