OSCILLATION OF EVEN ORDER NONLINEAR NEUTRAL DIFFERENTIAL EQUATIONS WITH DAMPING

Y. ŞAHINER YILMAZ AND A. ZAFER

Abstract. Oscillation criteria for even order differential equations of the following form

\[z^{(n)}(t) + p(t)\phi(z^{(n-1)}(t)) + q(t)|x(\sigma(t))|^{\alpha}\sgn[x(\sigma(t))]) = 0, \]

where

\[z(t) = x(t) + a(t)x(\tau(t)), \quad \alpha > 0, \quad \text{and} \quad n \text{ is even} \]

are obtained via comparison with second order differential inequalities. It is shown that existence of no eventually positive solution of a certain second order delay differential inequality is sufficient for every solution \(x(t) \) of the above equation to be oscillatory.

Key words and phrases: Oscillation, damping term, neutral equation.

REFERENCES

[9] ———, On the oscillation of solutions of the equation \(\frac{d^nu}{dt^n} + a(t)|u|^\alpha\sgn u = 0 \), Mat. Sb., 65 (1964), 172–187. [Russian]
