INEQUALITIES FOR THE MINIMAL EIGENVALUE OF THE LAPLACIAN IN AN ANNULUS

A. G. Ramm and P. N. Shivakumar

Abstract. We discuss the behavior of the minimal eigenvalue λ of the Dirichlet Laplacian in the domain $D_1 \setminus D_2 := D$ (an annulus) where D_1 is a circular disc and $D_2 \subset D_1$ is a smaller circular disc. It is conjectured that the minimal eigenvalue λ has a maximum value when D_2 is a concentric disc. If h is a displacement of the center of the disc D_2 and $\lambda(h)$ is the corresponding minimal eigenvalue, then $\frac{d\lambda(h)}{dh} < 0$ so that $\lambda(h)$ is minimal when ∂D_2 touches ∂D_1, where ∂D is the boundary of D. Numerical results are given to back the conjecture. Upper and lower bounds are given for $\lambda(h)$.

Key words and phrases: Inequalities, estimation of eigenvalues, perturbation theory.

REFERENCES