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EXISTENCE THEOREMS OF GENERALIZED QUASI–VARIATIONAL

INEQUALITIES WITH UPPER HEMI–CONTINUOUS

AND DEMI OPERATORS ON NON–COMPACT SETS

MOHAMMAD S. R. CHOWDHURY 1 AND ENAYET TARAFDAR

Abstract. Suppose that E is a topological vector space and X is a non-empty subset of E . Let

S : X → 2X and T : X → 2E∗
be two maps. Then the generalized quasi-variational inequality

problem (GQVI) is to find a point ŷ ∈ S(ŷ) and a point ŵ ∈ T(ŷ) such that Re〈 ŵ, ŷ − x〉 � 0
for all x ∈ S(ŷ) . We shall use Chowdhury and Tan’s generalized version [4] of Ky Fan’s
minimax inequality [7] as a tool to obtain some general theorems on solutions of the GQVI in
locally convex Hausdorff topological vector spaces. We obtain the existence theorems of GQVI
on paracompact sets X where the set-valued operators T are demi operators [3] and are upper
hemi-continuous [5] along line segments in X to the weak ∗ -topology on E∗ .
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