FURTHER CHARACTERIZATIONS OF
CHAOTIC ORDER VIA SPECHT’S RATIO

TAKEAKI YAMAZAKI

Abstract. As a characterization of chaotic order, we showed “If \(MI \geq B \geq mI > 0 \), then
\(\log A \geq \log B \) is equivalent to
\[
M_h(p)A^p \geq B^p
\]
for all \(p > 0 \), where \(h = \frac{M}{m} > 1 \) and \(M_h(p) = \frac{h^p}{e \log h^p - 1} \)” in [11].

In this paper, we shall show the following characterization of chaotic order as a parallel result to the result mentioned above:
“\(If MI \geq B \geq mI > 0 \), then \(\log A \geq \log B \) is equivalent to
\[
A^p + L(m, M) \log M_h(p)I \geq B^p
\]
for all \(p > 0 \), where \(L(m, M) = \frac{M - m}{\log M - \log m} \).” And we shall discuss the relations among this result and some related results.

Key words and phrases: Positive operator, Specht’s ratio, chaotic order.

REFERENCES