ON EMBEDDINGS BETWEEN CLASSICAL LORENTZ SPACES

M. CARRO, L. PICK, J. SORIA AND V. D. STEPANOV

Abstract. Let \(p \in (0, \infty) \) and \(v \) be a weight on \((0, \infty)\) and let \(\Lambda^p(v) \) be the classical Lorentz space, determined by the norm \(\|f\|_{\Lambda^p(v)} := \left(\int_0^\infty (f^*(t))^p v(t) \, dt \right)^{1/p} \). When \(p \in (1, \infty) \), this space is known to be a Banach space if and only if \(v \) is non-increasing, while it is only equivalent to a Banach space if and only if \(\Lambda^p(v) = \Gamma^p(v) \), where \(\|f\|_{\Gamma^p(v)} := \left(\int_0^\infty (f^{**}(t))^p v(t) \, dt \right)^{1/p} \). We may thus conclude that, for \(p \in (1, \infty) \), the space \(\Lambda^p(v) \) is equivalent to a Banach space if and only if the norm of a function \(f \) in it can be expressed in terms of \(f^{**} \). We study the question whether an analogous assertion holds when \(p = 1 \). Motivated by this problem, we consider general embeddings between four types of classical and weak Lorentz spaces, namely, \(\Lambda^p(v) \), \(\Lambda^{p,\infty}(v) \), \(\Gamma^p(v) \), \(\Gamma^{p,\infty}(v) \), where \(\Lambda^{p,\infty}(v) \) and \(\Gamma^{p,\infty}(v) \) are certain weak analogues of the spaces \(\Lambda^p(v) \) and \(\Gamma^p(v) \), respectively. We present a unified approach to these embeddings, based on rearrangement techniques. We survey all the known results and prove new ones. Our main results concern the embedding \(\Gamma^{p,\infty}(v) \hookrightarrow \Lambda^q(w) \) which had not been characterized so far. We apply our results to the characterization of associate spaces of classical and weak Lorentz spaces and we give a characterization of fundamental functions for which the endpoint Lorentz space and the endpoint Marcinkiewicz space coincide.

Key words and phrases: Classical Lorentz spaces, continuous embeddings, weighted inequalities for non-increasing functions.

REFERENCES

