CALCULUS PROOFS OF SOME COMBINATORIAL INEQUALITIES

TOMISLAV DOŠLJIĆ AND DARKO VELJAN

Abstract. Using calculus we show how to prove some combinatorial inequalities of the type log-concavity or log-convexity. It is shown by this method that binomial coefficients and Stirling numbers of the first and second kinds are log-concave, and that Motzkin numbers and secondary structure numbers of rank 1 are log-convex. In fact, we prove via calculus a much stronger result that a natural continuous “patchwork” (i.e. corresponding dynamical systems) of Motzkin numbers and secondary structures recursions are increasing functions. We indicate how to prove asymptotically the log-convexity for general secondary structures. Our method also applies to show that sequences of values of some orthogonal polynomials, and in particular the sequence of central Delannoy numbers, are log-convex.

Mathematics subject classification (2000): 05A20, 05A10, 26A06.

Keywords and phrases: log-concavity, log-convexity, Motzkin numbers, Delannoy numbers, secondary structures, Legendre polynomials, calculus.

REFERENCES