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A GENERAL FRAMEWORK FOR THE SOLVABILITY OF A

CLASS OF NONLINEAR VARIATIONAL INEQUALITIES

RAM U. VERMA

Abstract. Based on a general framework for the auxiliary problem principle involving con-
tinuously m -Frechet-differentiable (m � 2) mappings, the approximation-solvability of the
following class of nonlinear variational inequality problems (NVIP) involving the generalized
partially relaxed monotone mappings is presented.

Find an element x∗ ∈ K such that

〈 T(x∗),η(x, x∗)〉 + f (x) − f (x∗) � 0 for all x ∈ K,

where T : K → Rn is a mapping from a nonempty closed invex subset K of Rn into Rn ,
η : K × K → Rn is a mapping, and f : K → R is a continuous invex function on K . The
general class of the auxiliary problems principle is described as follows: for a given iterate
xk ∈ K and for a parameter ρ > 0 , determine xk+1 such that

〈 ρT(xk) + h′(xk+1) − h′(xk),η(x, xk+1)〉 + ρ[f (x) − f (xk+1)] � 0 for all x ∈ K,

where h : K → R is continuously Frechet-differentiable on K .
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