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A GENERAL FRAMEWORK FOR THE SOLVABILITY OF A
CLASS OF NONLINEAR VARIATIONAL INEQUALITIES

RAM U. VERMA

Abstract. Based on a general framework for the auxiliary problem principle involving con-
tinuously m -Frechet-differentiable (m > 2) mappings, the approximation-solvability of the
following class of nonlinear variational inequality problems (NVIP) involving the generalized
partially relaxed monotone mappings is presented.

Find an element x* € K such that

(TOF),n(6x™)) +£(x) —f(x*) >0 forall xeKk,

where T : K — R”" is a mapping from a nonempty closed invex subset K of R” into R",
n: K x K — R" is a mapping, and f : K — R is a continuous invex function on K. The
general class of the auxiliary problems principle is described as follows: for a given iterate

K € K and fora parameter p > 0, determine +K+ such that

(PT(R) 4 ! (1) — 1 (), e )+ plf (6) —F (4+1)] 20 forall x €K,

where h : K — R is continuously Frechet-differentiable on K.
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