

## COUNTING SETS WITH EXCEPTIONS

## G. MOLTENI

Abstract. Let  $S \subseteq \mathbb{N}$  be a set of integers,  $S_X \stackrel{\mathrm{def}}{=} \cap [0,x]$ ,  $X \stackrel{\mathrm{def}}{=} \sharp S_X$  and let  $\tilde{S} \subseteq S$  be the "expectional" set,  $\tilde{S}_X \stackrel{\mathrm{def}}{=} \tilde{S} \cap [0,x]$ ,  $E \stackrel{\mathrm{def}}{=} \sharp \tilde{S}_X$ . An upper bound for the fraction of subsets of  $S_X$  having N elements and intersecting K times at least the set  $\tilde{S}$  is proved when  $N, E, X \to \infty$ .

Mathematics subject classification (2000): 05A20. Key words and phrases: exceptional set.

## REFERENCES

- [1] G. E. Andrews, R. Askey, R. Roy, *Special Functions*, Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, 1999.
- [2] J. BRÜDERN, A. PERELLI, A note on the distribution of sumsets, to appear.