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REFINED GEOMETRIC INEQUALITIES BETWEEN TWO

OR MORE TRIANGLES OBTAINED BY DEDUBLATION

RAZVAN ALIN SATNOIANU

Abstract. We study a class of inequalities between two or more triangles which extend the known
metric relations between the elements of a single triangle. The common idea is that any quadratic
type inequality between the elements of one triangle can have a “dedublated form” when written
between the elements of two (or more) triangles with the optimal inequality being possible only
when the triangles are similar. For example, we extend the well known quadratic form inequalities
of Gerretsen [2, page 8] and give the new, dedublated form inequalities for the relations, which,
in the case of a single triangle, correspond to the distances between the important points of the
triangle such as circumcentre, incentre, orthocentre and the centre of mass.
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