

FUNCTIONAL INCLUSIONS ON SQUARE-SYMMETRIC GRUPOIDS AND HYERS-ULAM STABILITY

DORIAN POPA

Abstract. In this paper we prove that a set-valued map $F: X \to P_0(Y)$ that satisfies the inclusion $F(x*y) \subset F(x) \diamond F(y)$ under suitable conditions admits exactly one selection $f: X \to Y$ that satisfies the equation $f(x*y) = f(x) \diamond f(y)$, where (X,*) and (Y,\diamond) are square-symmetric grupoids and \diamond is the extension of \diamond to $P_0(Y)$. This result is in connection with Hyers-Ulam stability of functional equation and generalizes a result of Z. Gajda and R. Ger.

Mathematics subject classification (2000): 39B72, 54C60.

Key words and phrases: Hyers-Ulam stability, set-valued map, selection, square-symmetric operation.

REFERENCES

- [1] J. ACZÉL, Lectures on functional equations and their applications, Academic Press, 1966.
- [2] G. L. FORTI, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50(1995), 143–190.
- [3] Z. GAJDA, R. GER, Subadditive multifunctions and Hyers-Ulam stability, Numerical Mathematics 80(1987), 281–291.
- [4] D. H. HYERS, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27(1941), 222–224.
- [5] D. H. HYERS, G. ISAC, TH. M. RASSIAS, Stability of functional equation in several variables, Birkhäuser Boston, 1998.
- [6] M. KUCZMA, An introduction to the theory of functional equations and inequalities, Cauchy's equation and Jensen inequality, Warszawa-Krákov-Katovice, 1985.
- [7] Z. PÁLES, Generalized stability of the Cauchy functional equation, Aequationes Math. 56, no. 3(1998), 222–232.
- [8] Z. PÁLES, P. VOLKMANN, R. D. LUCE, Hyers-Ulam stability of functional equations with square-symmetric operation, Proc. Natl. Acad. Sci. USA 95(1998), 12772–12775.
- [9] Z. PÁLES, Hyers-Ulam stability of the Cauchy functional equation on square-symmetric grupoids, Publ. Math. Debrecen 58/4(2001), 651–666.
- [10] D. POPA, Additive selections of (α, β) -subadditive set-valued maps, Glasnik Mat. **36**(2001), 11–16.
- [11] TH. M. RASSIAS, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc. 72(1978), 297–300.
- [12] J. RÄTZ, On approximately additive mappings, General Inequalities 2 (E. F. Beckenbach, ed.), International Series in Numerical Mathematics, vol. 47, Birkhäuser, Basel-Boston, 1980, 233–251.
- [13] W. SMAJDOR, Subadditive set-valued functions, Glasnik Mat. 21(1986), 281–291.
- [14] L. SZÉKELYHIDI, A note on Hyers's theorem, C. R. Math. Rep. Acad. Sci. Canada VIII(1986), 127–129.

