

HERMITE-HADAMARD'S INEQUALITIES FOR MULTIVARIATE g-CONVEX FUNCTIONS

M. Klaričić Bakula, E. Neuman, J. Pečarić and Vida Šimić

Abstract. Refinements of generalized Hermite-Hadamard's inequalities for multivariate g-convex functions are given. Since special instances of the g-convex functions include the r-convex and the logarithmically convex functions, those inequalities also give refinements of the Hermite-Hadamard's inequalities for these families of functions.

Mathematics subject classification (2000): 26D15, 26B25.

Key words and phrases: Hermite-Hadamard's inequalities, g-convexity, r-convexity, log-convexity, functional Stolarsky means, logarithmic mean.

REFERENCES

- [1] B. C. CARLSON, Special Functions of Applied Mathematics, Academic Press, New York, 1977.
- [2] S. S. DRAGOMIR, Refinements of the Hermite-Hadamard integral inequality for log-convex functions, Austral. Math. Gazette 28, (2001), 129–134.
- [3] S. S. DRAGOMIR, B. MOND, *Integral inequalities of Hadamard's type for log-convex functions*, Demonstratio Math. **31**, 2 (1998), 354–364.
- [4] S. S. DRAGOMIR, C. E. M. PEARCE, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
 (Online: http://rgmia.vu.edu.au/monographs/hermite_hadamard.html).
- [5] E. NEUMAN, Inequalities involving multivariate convex functions II, Proc. Amer. Math. Soc., 109, (1990), 965–974.
- [6] E. NEUMAN, The weighted logarithmic mean, J. Math. Anal. Appl., 188, (1994), 885–900.
- [7] E. NEUMAN, J. SÁNDOR, Inequalities involving Stolarsky and Gini means, Math. Pannonica, 14, (2003), 29–44.
- [8] E. NEUMAN, C. E. M. PEARCE, J. PEČARIĆ AND V. ŠIMIĆ, *The generalized Hadamard's inequality, g-convexity and functional Stolarsky means*, Bull. Austral. Math. Soc. **68**, (2003), 303–316.
- [9] C. E. M. PEARCE, J. PEČARIĆ AND V. ŠIMIĆ, Stolarsky means and Hadamard's inequality, J. Math. Anal. Appl., 220, (1998), 99–109.
- [10] C. E. M. PEARCE, J. PEČARIĆ AND V. ŠIMIĆ, Functional Stolarsky Means, Mathematical Inequalities and Applications 2, 4 (1999), 479–489.
- [11] J. E. PEČARIĆ, F. PROSCHAN AND Y. L. TONG, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.
- [12] J. PEČARIĆ, V. ŠIMIĆ, Stolarsky-Tobey mean in n variables, Mathematical Inequalities and Applications 2, 3 (1999), 325–341.

