REVERSE INEQUALITY TO ARAKI’S INEQUALITY

JEAN-CHRISTOPHE BOURIN

Abstract. Let A and Z be n-by-n matrices. Suppose $A \succeq 0$ (positive semi-definite) and $Z > 0$ with extremal eigenvalues a and b. Then, for each $p > 1$, there exist unitary matrices U and V such that

$$\frac{1}{K(a,b,p)} U(AZA)^p U^* \leq A^pZ^pA^p \leq K(a,b,p) V(AZA)^p V^*.$$

where $K(a,b,p)$ is the Ky Fan constant. The right inequality is both a generalization of Ky Fan’s inequality

$$\langle h, Z^p h \rangle \leq K(a,b,p) \langle h, Z h \rangle^p,$$

where h is an arbitrary norm one vector, and a reverse inequality to Araki’s inequality

$$\| (AZA)^p \| \leq \| A^pZ^pA^p \|.$$

for unitarily invariant norms $\| \cdot \|$.

Key words and phrases: Symmetric norms, singular values, operator inequalities, Araki’s inequality.

REFERENCES