

ON A ČEBYŠEV-TYPE FUNCTIONAL AND GRÜSS-LIKE BOUNDS

P. CERONE

Abstract. The classic Čebyšev functional involves the difference between the integral mean of the product of two functions and the product of the integral means of the individual functions. A Čebyšev-type functional involving the arithmetic average of the upper and lower bounds of one of the functions rather than the integral mean is examined, providing sharp Grüss-like bounds.

The current investigation is undertaken within a measurable space setting. The results are capitalised under a variety of scenarios and in particular in obtaining sharp Grüss-like bounds for

Mathematics subject classification (2000): 26D15, 26D20, 26D10.

perturbed rules in numerical integration.

Key words and phrases: Čebyšev functional, sharp bounds, measurable functions, Grüss inequality, Lebesgue integral, perturbed rules.

REFERENCES

- [1] I. BUDIMIR, P. CERONE AND J.E. PEČARIĆ, *Inequalities related to the Chebyshev functional involving integrals over different intervals*, J. Ineq. Pure and Appl. Math., **2**, (2) Art. 22, (2001). Online: http://jipam.vu.edu.au/v2n2/
- [2] P. P. CERONE, On an identity for the Chebychev functional and some ramifications, J. Ineq. Pure and Appl. Math., 3, (1) Art. 4, (2002). Online: http://jipam.vu.edu.au/v3n1/
- [3] P. CERONE, On relationships between Ostrowski, trapezoidal and Chebychev identies and inequalities, Soochow J. Math., 28, (3) (2002), 311–328.
- [4] P. CERONE, On some generalisatons of Steffensen's inequality and related results, J. Ineq. Pure and Appl. Math., 2, (3) Art. 28, (2001). Online: http://jipam.vu.edu.au/v2n3/
- [5] P. CERONE, S. DRAGOMIR, A refinement of the Grüss inequality and applications, RGMIA Res. Rep. Coll., 5, (2) (2002), Article 14. Online: http://rgmia.vu.edu.au/v5n2.html.
- [6] P. CERONE, S. DRAGOMIR, *New upper and lower bounds for the Čebyšev functional*, J. Ineq.Pure and Appl. Math., **3**, 5 (2002), Art. 77, pp. 15. Online: http://jipam.vu.edu.au/article.php?sid=229
- [7] P. CERONE, S. DRAGOMIR, Generalisations of the Grüss, Chebychev and Lupaş inequalities for integrals over different intervals, Int. J. Appl. Math., 6, (2) (2001), 117–128.
- [8] P. CERONE, S.S. DRAGOMIR, On some inequalities arising from Montgomery's identity, J. Comput. Anal. Applics., 5, 4 (2003), 341–367.
- [9] P. CERONE, S.S. DRAGOMIR, On some inequalities for the expectation and variance, Korean J. Comp & Appl. Math., 8, 2 (2001), 357–380
- [10] P. CERONE, S.S. DRAGOMIR, Three point quadrature rules, involving, at most, a first derivative, RGMIA Res. Rep. Coll., 2, (4) (1999), Article 8. Online: http://rgmia.vu.edu.au/v2n4.html.
- [11] X.L. CHENG, J. SUN, A note on the perturbed trapezoid inequality, J. Ineq. Pure and Appl. Math., 3, (2) Art. 29, (2002). Online: http://jipam.vu.edu.au/v3n2/046_01.html.
- [12] S.S. DRAGOMIR, Improvement of Ostrowski and generalised trapezoid inequality in terms of the upper and lower bounds of the first derivatives, (2000). RGMIA Res. Rep. Coll., 5 (Supplement) (2002), Article 10. Online: http://rgmia.vu.edu.au/v5(E).html.
- [13] S.S. DRAGOMIR, Some integral inequalities of Grüss type, Indian J. of Pure and Appl. Math., 31, (4) (2000), 397–415.

- [14] S.S. DRAGOMIR, TH.M. RASSIAS (Ed.), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publishers, 2002.
- [15] A.M. FINK, A treatise on Grüss' inequality, Analytic and Geometric Inequalities and Applications, Math. Appl., 478 (1999), Kluwer Academic Publishers, Dordrecht, 93–114.
- [16] G. GRÜSS, Über das Maximum des absoluten Betrages von $\frac{1}{b-a} \int_a^b f(x)g(x)dx \frac{1}{(b-a)^2} \int_a^b f(x)dx$ $\int_a^b g(x)dx$, Math. Z., **39** (1935), 215–226. [17] M. MATIĆ, J.E. PEČARIĆ AND N. UJEVIĆ, *On new estimation of the remainder in generalised Taylor's*
- formula, Math. Ineq. Appl., 2, (3) (1999), 343-361.
- [18] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
- [19] J. PEČARIĆ, F. PROSCHAN AND Y. TONG, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, San Diego, 1992.
- [20] N.JA. SONIN, O nekotoryh neravenstvah otnosjašcihsjak opredelennym integralam, Zap. Imp. Akad. Nauk po Fiziko-matem, Otd.t., 6, (1898), 1-54.

