

A CAUCHY-SCHWARZ INEQUALITY FOR TRIPLES OF VECTORS

MARINA ARAV, FRANK J. HALL AND ZHONGSHAN LI

Abstract. An inequality of the Cauchy–Schwarz type is proved for triples of vectors, and interpreted geometrically in terms of the vertex angles of a tetrahedron. The results are illustrated by 3×3 correlation matrices.

Mathematics subject classification (2000): 15A45, 52B10, 62H20.

Key words and phrases: Cauchy-Schwarz inequality for three vectors; Gram matrix; Gramian; tetrahedron; angles; correlation matrices.

REFERENCES

- [1] J. K. BAKSALARY, Solution to Problem 89-7 [Let X, Y and Z be random variables. If the correlation $\rho(X,Y)$ and $\rho(Y,Z)$ are known, what are the sharp lower and upper bounds for $\rho(X,Z)$?], The IMS Bulletin, 19, 213–214, 1990.
- [2] F. R. GANTMACHER, The Theory of Matrices, Volume 1, Chelsea Publishing Co., 1959.
- [3] G. H. HARDY, J. E. LITTLEWOOD AND G. PÓLYA, *Inequalities*, Cambridge University Press, 1952.
- [4] J. ISOTALO, S. PUNTANEN AND G. P. H. STYAN, Matrix Tricks for Linear Statistical Models (3rd edition), University of Tampere, 2005, ISBN-951-44-6526-1.
- [5] J. M. STEELE, The Cauchy-Schwarz Master Class: An Introduction to the Art of Inequalities, Cambridge University Press, 2004.

