GENERALIZED INTEGRAL OPERATORS RELATED WITH \(p \)-VALENT ANALYTIC FUNCTIONS

KHALIDA INAYAT NOOR AND MUHAMMAD ARIF

Abstract. Let \(\mathcal{A}(p), p \in \mathbb{N} \), be the class of functions \(f : f(z) = z^p + \sum_{k=1}^{\infty} a_{p+k} z^{p+k} \), analytic in the unit disc \(E \). For \(n \in \mathbb{N}_0, n > -p \), an integral operator \(I_{n+p-1} : \mathcal{A}(p) \rightarrow \mathcal{A}(p) \) is defined as \(I_{n+p-1} f = J_{n+p-1}^{(-1)} \star f \) such that \(\left(J_{n+p-1}^{(-1)} \star f_{n+p-1} \right)(z) = \frac{z^p}{(1-z^p)^{n+p-1}} \) and \(\star \) denotes convolution. Using this integral operator, some new classes \(H_{n,p}(k, \alpha, \beta, \mu, \lambda) \) of \(\mathcal{A}(p) \) are introduced and certain interesting properties of these classes are studied. A radius problem is also discussed.

Keywords and phrases: \(p \)-valent functions, convolution, integral operator, radius problems.

REFERENCES