
Mathematical
Inequalities

& Applications
Volume 13, Number 1 (2010), 57–61

AN EXTENSION OF THE FUGLEDE–PUTNAM’S

THEOREM TO CLASS A OPERATORS

SALAH MECHERI AND ATSUSHI UCHIYAMA

Abstract. The familiar Fuglede-Putnam’s Theorem is as follows (see [5], [9] and [11]): If A and
B are normal operators and if X is an operator such that AX = XB , then A∗X = XB∗ . In this
paper, the hypothesis on A and B can be relaxed by using a Hilbert-Schmidt operator X : Let
A be a class A operator and let B∗ be an invertible class A operator such that AX = XB for
a Hilbert-Schmidt operator X . Then A∗X = XB∗ . As a consequence of this result, we obtain
that the range of the generalized derivation induced by this class of operators is orthogonal to its
kernel. Some properties of log -hyponormal operators are also given.
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121.

[23] A. UCHIYAMA, Weyl’s theorem for class A operators, Math. Inequal. Appl., 4, 1 (2001), 143–150.

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


