APPURAMATIONS TO EULER’S CONSTANT

KH. HESSAMI PILEHROOD AND T. HESSAMI PILEHROOD

Abstract. We study a problem of finding good approximations to Euler’s constant \(\gamma = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k} - \log(n + 1) \), by linear forms in logarithms and harmonic numbers. In 1995, C. Elsner showed that slow convergence of the sequence \(S_n \) can be significantly improved if \(S_n \) is replaced by linear combinations of \(S_n \) with integer coefficients. In this paper, considering more general linear transformations of the sequence \(S_n \) we establish new accelerating convergence formulae for \(\gamma \). Our estimates sharpen and generalize recent Elsner’s, Rivoal’s and author’s results.

Keywords and phrases: Euler’s constant; approximation; sequence transformation; convergence acceleration.

REFERENCES

[8] M. PRÉVOST, A family of criteria for irrationality of Euler’s constant, e-print. math. NT/0507231 (July 2005)