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A NEW GENERALIZATION OF HARDY–HILBERT’S

INEQUALITY WITH NON–HOMOGENEOUS KERNEL
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Abstract. Let p > 1 , 1/p + 1/p∗ = 1 , and a = (an)∞n=1 , b = (bm)∞m=1 be two complex se-
quences. We exhibit the generalization of Hardy-Hilbert’s inequality of the following type:
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where K : (0,∞)× (0,∞) → (0,∞) , f1, f2,φ1,φ2 : (0,∞) → (0,∞) and C is a suitable constant.
We also get several interesting inequalities which generalize many recent results.
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