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CHARACTERIZATIONS OF THE CONVERGENCE OF

HARMONIC AVERAGES OF DOUBLE NUMERICAL SEQUENCES

ÁRPÁD FEKETE, IRINA GEORGIEVA AND FERENC MÓRICZ

Abstract. In recent years, the almost sure central limit theorem has attracted widespread atten-
tion in Probability Theory. It involves the harmonic (also called logarithmic) averages of a cer-
tain numerical sequence formed from a sequence of independent, identically distributed random
variables. The convergence behavior of the sequence of harmonic averages of a given numerical
sequence was studied in [3] by the third author. Our main goal in this paper is to extend these
characterization results from single to double numerical sequences of complex numbers.

Among others, the following Theorem 2∗ is proved. Let {xi j : i, j = 1,2, . . .} be a dou-
ble sequence of complex numbers. Necessary and sufficient condition for the existence of the
bounded limit relation
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where
Jm := {μm−1 +1,μm−1 +2, . . . ,μm}, μm := 22m

, m = 0,1, . . . .
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