CHARACTERIZATIONS OF THE CONVERGENCE OF HARMONIC AVERAGES OF DOUBLE NUMERICAL SEQUENCES

ÁRPÁD FEKETE, IRINA GEORGIEVA AND FERENC MÓRICZ

Abstract. In recent years, the almost sure central limit theorem has attracted widespread attention in Probability Theory. It involves the harmonic (also called logarithmic) averages of a certain numerical sequence formed from a sequence of independent, identically distributed random variables. The convergence behavior of the sequence of harmonic averages of a given numerical sequence was studied in [3] by the third author. Our main goal in this paper is to extend these characterization results from single to double numerical sequences of complex numbers.

Among others, the following Theorem 2^{*} is proved. Let $\{x_{ij}: i, j = 1, 2, ...\}$ be a double sequence of complex numbers. Necessary and sufficient condition for the existence of the bounded limit relation

$$\mathbf{b} - \lim_{k,\ell \to \infty} \frac{1}{(\ln k)(\ln \ell)} \sum_{i=1}^{k} \sum_{j=1}^{\ell} \frac{x_{ij}}{ij} = \xi$$

is that

$$\mathbf{b} - \lim_{m,n\to\infty} \frac{1}{2^{m+n}} \max_{k\in J_m, \ell\in J_n} \Big| \sum_{i=\mu_{m-1}+1}^k \sum_{j=\mu_{n-1}+1}^\ell \frac{x_{ij}-\xi}{ij} \Big| = 0,$$

where

$$J_m := \{\mu_{m-1} + 1, \mu_{m-1} + 2, \dots, \mu_m\}, \ \mu_m := 2^{2^m}, \ m = 0, 1, \dots$$

Mathematics subject classification (2010): Primary 40B05, 40G99; Secondary 60F05, 60F15.

Keywords and phrases: Arithmetic averages, harmonic averages of double numerical sequences, bounded convergence in Pringsheim's sense, regular summability matrix, Toeplitz' theorem, bounded-regular summability matrix, Robison's theorem, law of large numbers, almost sure central limit theorem.

REFERENCES

- G. A. BROSAMLER, An almost everywhere central limit theorem, Math. Proc. Cambridge Philos. Soc., 104 (1988), 561–574.
- [2] F. MÓRICZ, On the harmonic averages of numerical sequences, Arch. Math. (Basel), 86 (2006), 375– 384.
- [3] P. RÉVÉSZ, The Laws of Large Numbers, Academic Press, New York, 1968.
- [4] G. M. ROBISON, Divergent double sequences and series, Trans. Amer. Math. Soc., 28 (1926), 50–73.
- [5] A. ZYGMUND, Trigonometric Series, Vol. I, Cambridge Univ. Press, 1959.

