A MAXIMAL INEQUALITY FOR NONNEGATIVE
SUB- AND SUPERMARTINGALES

ADAM OSEKOWSKI

Abstract. Let \(X = (X_t)_{t \geq 0} \) be a nonnegative semimartingale and \(H = (H_t)_{t \geq 0} \) be a predictable process taking values in \([-1,1]\). Let \(Y \) denote the stochastic integral of \(H \) with respect to \(X \). We show that

(i) If \(X \) is a supermartingale, then
\[
\left\| \sup_{t \geq 0} Y_t \right\|_1 \leq 3 \left\| \sup_{t \geq 0} X_t \right\|_1
\]
and the constant 3 is the best possible.

(ii) If \(X \) is a submartingale satisfying \(\left\| X \right\|_\infty \leq 1 \), then
\[
\left\| \sup_{t \geq 0} Y_t \right\|_p \leq 2 \Gamma(p+1)^{1/p}, \quad 1 \leq p < \infty.
\]
The constant \(2 \Gamma(p+1)^{1/p} \) is the best possible.

Mathematics subject classification (2010): Primary: 60G42; secondary: 60G44.

Keywords and phrases: Submartingale, supermartingale, stochastic integral, maximal function.

REFERENCES