A GEOMETRIC PROOF OF BLUNDON’S INEQUALITIES

DORIN ANDRICA AND CATALIN BARBU

Abstract. A geometric approach of Blundon’s inequality is presented. Theorem 2.1 gives the formula for $\cos I:\hat{O}\hat{N}$ in terms of the symmetric invariants s, R, r of a triangle, implying Blundon’s inequality (Theorem 2.2). A dual formula for $\cos I_a:\hat{O}\hat{N}_a$ is given in Theorem 3.1 and this implies the dual Blundon’s inequality (Theorem 3.2). As applications, some inequalities involving the exradii of the triangle are presented in the last section.

Keywords and phrases: Euler’s inequality; fundamental triangle inequality; Euler determination problem; dual fundamental triangle inequality.

REFERENCES

