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A GEOMETRIC PROOF OF BLUNDON’S INEQUALITIES

DORIN ANDRICA AND CATALIN BARBU

Abstract. A geometric approach of Blundon’s inequality is presented. Theorem 2.1 gives the
formula for cos ̂ION in terms of the symmetric invariants s , R , r of a triangle, implying Blun-
don’s inequality (Theorem 2.2). A dual formula for cos ̂IaONa is given in Theorem 3.1 and
this implies the dual Blundon’s inequality (Theorem 3.2). As applications, some inequalities
involving the exradii of the triangle are presented in the last section.
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