

QUASI–MONOTONE WEIGHT FUNCTIONS AND THEIR CHARACTERISTICS AND APPLICATIONS

LARS–ERIK PERSSON, NATASHA SAMKO AND PETER WALL

Abstract. A weight function $w(x)$ on $(0, l)$ or (l, ∞), is said to be quasi-monotone if $w(x)x^{-a_0} \leq C_0w(y)y^{-a_0}$ either for all $x \leq y$ or for all $y \leq x$, for some $a_0 \in \mathbb{R}$, $C_0 \geq 1$. In this paper we discuss, complement and unify several results concerning quasi-monotone functions. In particular, some new results concerning the close connection to index numbers and generalized Bary-Stechkin classes are proved and applied. Moreover, some new regularization results are proved and several applications are pointed out, e.g. in interpolation theory, Fourier analysis, Hardy-type inequalities, singular operators and homogenization theory.

Keywords and phrases: Inequalities, weight functions, quasi-concave functions, quasi-monotone functions, index numbers, Bary-Stechkin class, regularization, Hardy-type inequalities.

REFERENCES

