LANDAU AND GRÜSS TYPE INEQUALITIES FOR INNER PRODUCT TYPE INTEGRAL TRANSFORMERS IN NORM IDEALS

DANKO R. JOCIĆ, ĐORDE KRTINIĆ AND MOHAMMAD SAL MOSLEHIAN

Abstract. For a probability measure \(\mu \) and for square integrable fields \((\mathcal{A}_t) \) and \((\mathcal{B}_t) \) of commuting normal operators we prove Landau type inequality

\[
\left\| \int_{\Omega} \mathcal{A}_t X \mathcal{B}_t \, d\mu(t) - \int_{\Omega} \mathcal{A}_t \, d\mu(t) \int_{\Omega} \mathcal{B}_t \, d\mu(t) \right\| \leq \sqrt{\int_{\Omega} |\mathcal{A}_t|^2 \, d\mu(t) - \left(\int_{\Omega} \mathcal{A}_t \, d\mu(t) \right)^2} \cdot \left(\sqrt{\int_{\Omega} |\mathcal{B}_t|^2 \, d\mu(t) - \left(\int_{\Omega} \mathcal{B}_t \, d\mu(t) \right)^2} \right)
\]

for all \(X \in \mathcal{B}(\mathcal{H}) \) and for all unitarily invariant norms \(\| \cdot \| \).

For Schatten \(p \)-norms similar inequalities are given for arbitrary double square integrable fields. Also, for all bounded self-adjoint fields satisfying \(C \leq \mathcal{A}_t \leq D \) and \(E \leq \mathcal{B}_t \leq F \) for all \(t \in \Omega \) and some bounded self-adjoint operators \(C, D, E, F \), and for all \(X \in \mathcal{C} \| \cdot \| (\mathcal{H}) \) we prove Grüss type inequality

\[
\left\| \int_{\Omega} \mathcal{A}_t X \mathcal{B}_t \, d\mu(t) - \int_{\Omega} \mathcal{A}_t \, d\mu(t) \int_{\Omega} \mathcal{B}_t \, d\mu(t) \right\| \leq \frac{\|D - C\| \cdot \|F - E\|}{4} \cdot \|X\|.
\]

More general results for arbitrary bounded fields are also given.

Mathematics subject classification (2010): Primary 47A63; Secondary 46L05, 47B10, 47A30, 47B15.

Keywords and phrases: Landau type inequality, Grüss type inequality, Gel’fand integral, norm inequality, elementary operators, Hilbert modules.

REFERENCES

[10] G. Grüss, Über das Maximum des absoluten Betrages von \(\frac{1}{b-a} \int_a^b f(x)g(x)dx - \frac{1}{(b-a)^2} \int_a^b f(x)dx \int_a^b g(x)dx \), Math. Z. 39 (1935), 215–226.

