ON THE DIRICHLET PROBLEM FOR THE GENERALIZED n–LAPLACIAN: SINGULAR NONLINEARITY WITH THE EXPONENTIAL AND MULTIPLE EXPONENTIAL CRITICAL GROWTH RANGE

ROBERT ČERNÝ

Abstract. Let $\Omega \subset \mathbb{R}^n$, $n \geq 2$, be a bounded domain containing the origin. Applying the Mountain Pass Theorem and a singular version of the generalized Moser-Trudinger inequality we prove the existence of a non-trivial weak solution to the problem

$$u \in W^{1}_0 L^{\Phi}(\Omega) \quad \text{and} \quad -\text{div}\left(\Phi'(\|\nabla u\|) \frac{\nabla u}{\|\nabla u\|}\right) = \frac{f(x,u)}{|x|^a} \quad \text{in} \ \Omega,$$

where $a \in [0,n)$, Φ is a Young function such that the space $W^{1}_0 L^{\Phi}(\Omega)$ is embedded into exponential or multiple exponential Orlicz space and $f(x,t)$ has the corresponding critical growth.

Keywords and phrases: Orlicz-Sobolev spaces, mountain pass theorem, Palais-Smale sequence.

REFERENCES