

CORACH-PORTA-RECHT INEQUALITY FOR CLOSED RANGE OPERATORS

MARYAM KHOSRAVI

Abstract. By $\mathbb{B}(\mathscr{H})$ we denote the space of all bounded linear operators on a Hilbert space \mathscr{H} . In 2001, Seddik characterized all invertible self-adjoint operators using the Corach-Porta-Recht inequality

$$||SXS^{-1} + S^{-1}XS|| \ge 2||X||.$$

In this paper, we find a characterization of closed range self-adjoint operators using a version of this inequality for closed range operators.

Mathematics subject classification (2010): Primary: 47A30, 15A09, secondary: 47B15.

Keywords and phrases: Moore-Penrose inverse, operator inequality, closed range operators, self-adjoint operators.

1. Introduction and preliminaries

In [1], Corach, Porta and Recht proved that if S is a self-adjoint invertible operator on a Hilbert space \mathcal{H} , then for all $X \in \mathbb{B}(\mathcal{H})$ the following (C-P-R) inequality holds:

$$||SXS^{-1} + S^{-1}XS|| \ge 2||X||.$$

They used this inequality as a key factor in their study of differential geometry. J. I. Fujii, M. Fujii, Furuta and Nakamoto [2], showed that this inequality is equivalent to Heinz inequality which is one of the most essential inequalities in operator theory.

Seddik [5] could find a characterization of non-zero scalars of invertible self-adjoint operators base on this inequality.

In this paper we discuss about a version of this inequality for Moore-Penrose invertible operators.

DEFINITION 1.1. Let $\mathscr A$ be an algebra with involution and $a \in \mathscr A$. If there exists an element $x \in \mathscr A$ satisfied the following four equations

$$axa = a$$
 $xax = x$
 $(ax)^* = ax$ $(xa)^* = xa$, (*)

then x is called a Moore-Penrose inverse of a and denoted by a^{\dagger} .

It is easy to show that the Moore-Penrose inverse of an element a is unique. If $a \in \mathscr{A}$ is Moore-Penrose invertible, then

(a)
$$a^{\dagger\dagger} = a$$
,

478 M. Khosravi

- (b) a^* is Moore-Penrose invertible and $a^{*\dagger} = a^{\dagger^*}$,
- (c) If a is invertible, then $a^{\dagger} = a^{-1}$,

(d)
$$(aa^*)^{\dagger} = a^{*^{\dagger}}a^{\dagger}$$
.

Harte and Mbekhta in [3] proved that if \mathscr{H} is a Hilbert space and $T \in \mathbb{B}(\mathscr{H})$ then the following conditions are equivalent:

- i) T has a generalized inverse (that is there exists an operator $S \in \mathbb{B}(\mathcal{H})$ for which TST = T and STS = S).
- ii) $\mathcal{R}(T)$ is closed.
- iii) T has a Moore-Penrose inverse.

In this case TT^{\dagger} is the projection on $\mathcal{R}(T)$ and $T^{\dagger}T$ is the projection on $\mathcal{R}(T^*)$.

In this note, we present a version of C-P-R inequality for Moore-Penrose invertible operators. In addition, for a close subspace $\mathscr K$ of Hilbert space $\mathscr H$, we give a characterization of all hermitian operators with range $\mathscr K$.

2. Main results

In [4], McIntosh proved that

$$||A^*AX + XBB^*|| \geqslant 2||AXB||,$$

for all operators $A, X, B \in \mathbb{B}(\mathcal{H})$. Using this inequality we can state the following result.

Theorem 2.1. Let S be a hermitian operator on Hilbert space \mathcal{H} such that $\mathcal{R}(S)$ is closed. Then

$$||SXS^{\dagger} + S^{\dagger}XS|| \geqslant 2||PXP||,$$

where $P = SS^{\dagger}$.

Proof. From McIntosh inequality and the relation $SS^{\dagger} = (SS^{\dagger})^* = S^{\dagger}S$, we have

$$\|SXS^{\dagger} + S^{\dagger}XS\| = \|SS(S^{\dagger}XS^{\dagger}) + (S^{\dagger}XS^{\dagger})SS\| \geqslant 2\|SS^{\dagger}XS^{\dagger}S\| = 2\|PXP\|. \qquad \Box$$

In general, it is not true that $(ab)^{\dagger}=b^{\dagger}a^{\dagger}$. However, in polar decomposition of an operator we can deduced the next result.

LEMMA 2.2. Let S be an operator with close range and S = U|S| be the polar decomposition of S. Then

$$S^{\dagger} = |S|^{\dagger} U^*, \quad \& \quad |S|^{\dagger} = S^{\dagger} U.$$

Proof. First note that as a result of polar decomposition, we have $\mathcal{R}(|S|) = \mathcal{R}(S^*)$ and therefore is closed. Since the Moore-Penrose inverse is unique, the following relations lead to the first equation:

- 1. $S(|S|^{\dagger}U^*)S = U|S|(|S|^{\dagger}U^*)S = U|S||S|^{\dagger}|S| = U|S| = S$.
- 2. $(|S|^{\dagger}U^*)S(|S|^{\dagger}U^*) = |S|^{\dagger}|S||S|^{\dagger}U^* = |S|^{\dagger}U^*.$
- 3. $S(|S|^{\dagger}U^*) = U|S||S|^{\dagger}U^*$ which is hermitian, because $|S||S|^{\dagger}$ is hermitian.
- 4. $(|S|^{\dagger}U^*S) = |S|^{\dagger}|S|$ which is hermitian.

The second equality is proved similarly. \Box

REMARK 2.3. By the previous lemma it is seen that

$$|S||S|^{\dagger} = |S|^{\dagger}|S| = S^{\dagger}U|S| = S^{\dagger}S.$$

In addition

$$|S|^{\dagger}(H) = |S|^{\dagger}|S|(H) = S^{\dagger}S(H) = S^{\dagger}(H) = S^{*}(H) = |S|(H).$$

So if S = U|S| is the polar decomposition of S, then U is isometry on $|S|^{\dagger}(H)$.

Using Lemma 2.2, we can deduce the following version of Theorem 2.1, similarly to [2]:

THEOREM 2.4. Let S,T be operators on Hilbert space \mathscr{H} such that $\mathscr{R}(S)$ and $\mathscr{R}(T)$ are closed. Then

$$||S^*XT^{\dagger} + S^{\dagger}XT^*|| \geqslant 2||PXQ||,$$

where $P = SS^{\dagger}$ and $Q = T^{\dagger}T$.

Proof. First we proved the inequality for the case that T = S. Let S = U|S| be the polar decomposition of S. Then

$$||S^*XS^{\dagger} + S^{\dagger}XS^*|| = |||S|U^*X|S|^{\dagger}U^* + |S|^{\dagger}U^*X|S|U^*||$$

$$= ||U(|S|^{\dagger}X^*U|S| + |S|X^*U|S|^{\dagger})||$$

$$= |||S|^{\dagger}X^*U|S| + |S|X^*U|S|^{\dagger}||$$

$$\geq 2|||S||S|^{\dagger}X^*U|S||S|^{\dagger}||$$

$$= 2||S||S|^{\dagger}U^*X|S||S|^{\dagger}||$$

$$= 2||U^*SS^{\dagger}XS^{\dagger}S||$$

$$= 2||SS^{\dagger}XS^{\dagger}S|| = 2||PXO||.$$
(U* is isometry on $S(H)$)

480 M. Khosravi

Now let S,T be two arbitrary operators for which $\mathscr{R}(S)$ and $\mathscr{R}(T)$ is closed. Using the previous part, for closed range operator $\begin{bmatrix} S & 0 \\ 0 & T \end{bmatrix}$ and all operators of the form $\begin{bmatrix} 0 & X \\ 0 & 0 \end{bmatrix}$ on the Hilbert space $\mathscr{H} \oplus \mathscr{H}$, we have

$$\begin{split} \left\| \begin{bmatrix} S^* & 0 \\ 0 & T^* \end{bmatrix} \begin{bmatrix} 0 & X \\ 0 & 0 \end{bmatrix} \begin{bmatrix} S^\dagger & 0 \\ 0 & T^\dagger \end{bmatrix} + \begin{bmatrix} S^\dagger & 0 \\ 0 & T^\dagger \end{bmatrix} \begin{bmatrix} 0 & X \\ 0 & 0 \end{bmatrix} \begin{bmatrix} S^* & 0 \\ 0 & T^* \end{bmatrix} \right\| \\ \geqslant 2 \left\| \begin{bmatrix} SS^\dagger & 0 \\ 0 & TT^\dagger \end{bmatrix} \begin{bmatrix} 0 & X \\ 0 & 0 \end{bmatrix} \begin{bmatrix} S^\dagger S & 0 \\ 0 & T^\dagger T \end{bmatrix} \right\|, \end{split}$$

That is

$$||S^*XT^{\dagger} + S^{\dagger}XT^*|| \geqslant 2||PXQ||.$$

In [5], Seddik obtained the following characterization of the invertible operators which satisfy the C-P-R inequality for all $X \in \mathbb{B}(\mathcal{H})$.

THEOREM 2.5. [5] The set of all invertible operators S, for which

$$\forall X \in \mathcal{H}, \ \|SXS^{-1} + S^{-1}XS\| \geqslant 2\|X\|.$$

is the set $\{\lambda M: \lambda \in \mathbb{C}^*, M \text{ is an invertible self-adjoint operator}\}.$

Now we prove a version of this theorem for Moore-Penrose invertible operators.

THEOREM 2.6. Let $\mathscr K$ be a closed subspace of $\mathscr H$ and P be the projection on $\mathscr K$. If $S \in \mathbb B(\mathscr H)$ with $\mathscr R(S) = \mathscr R(S^*) = \mathscr K$ and

$$\forall X \in \mathbb{B}(\mathscr{H}), \ \|SXS^{\dagger} + S^{\dagger}XS\| \geqslant 2\|PXP\|,$$

then $S = \lambda T$, for some non-zero $\lambda \in \mathbb{C}$ and some self-adjoint operator T with $\mathcal{R}(T) = \mathcal{K}$.

Proof. From the hypothesis, we can simply write

$$||S(PXP)S^{\dagger} + S^{\dagger}(PXP)S|| = ||SXS^{\dagger} + S^{\dagger}XS|| \geqslant 2||PXP||,$$

So from Theorem 2.5, we have $S = \lambda T$ as operators on $\mathbb{B}(\mathcal{K})$. Since S = 0 on \mathcal{K}^{\perp} , we can get the result. \square

From Theorem 2.1 and 2.6, the following theorem is immediately follows.

THEOREM 2.7. Let \mathcal{K} be a closed subspace of \mathcal{H} and P be the projection on \mathcal{K} . If $S \in \mathbb{B}(\mathcal{H})$ with $\mathcal{R}(S) = \mathcal{R}(S^*) = \mathcal{K}$, then the following conditions are equivalent:

- $\forall X \in \mathbb{B}(\mathcal{H}), \|SXS^{\dagger} + S^{\dagger}XS\| \geqslant 2\|PXP\|,$
- $S = \lambda T$ for some self-adjoint operator T with $\mathcal{R}(T) = \mathcal{K}$, and non-zero scalar λ .

Acknowledgment

The author would like to express her thanks to the referee for useful and heart-warming suggestions.

REFERENCES

- G. CORACH, R. PORTA AND L. RECHT, An operator inequality, Linear Algebra Appl. 142 (1990), 153–158.
- [2] J. I. FUJII, M. FUJII, T. FURUTA AND R. NAKAMOTO, Norm inequalities equivalent to Heinz inequality, Proc. Amer. Math. Soc. 118 (1993), 827–830.
- [3] R. HARTE AND M. MBEKHTA, On generalized inverses in C*-algebras, Studia Mathematics (1992), no. 103, 71–77.
- [4] A. MCINTOSH, Heinz inequalities and perturbation of spectral families, Macquarie Mathematical Reports, Macquarie Univ., 1979.
- [5] A. SEDDIK, Some results related to the Corach-Porta-Recht inequality, Proc. Amer. Math. Soc. 129, 10 (1987), 3009–3015.