A CHARACTERIZATION OF THE STABILITY OF A SYSTEM OF THE BANACH SPACE VALUED DIFFERENTIAL EQUATIONS

TAKESHI MIURA, GO HIRASAWA, SIN-EI TAKAHASI AND TAKAHIRO HAYATA

Abstract. We will consider the Banach space valued differential equation \(y'(t) = A y(t) \), where \(A \) is an \(n \times n \) complex matrix. We give a necessary and sufficient condition in order that the equation have the Hyers-Ulam stability. As a Corollary, we prove that the Banach space valued linear differential equation with constant coefficients \(y^{(n)}(t) + a_{n-1}y^{(n-1)}(t) + \cdots + a_1 y'(t) + a_0 y(t) = 0 \) has the Hyers-Ulam stability if and only if \(\text{Re} \lambda \neq 0 \) for all the solutions \(\lambda \) of the equation \(\lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1 \lambda + a_0 = 0 \).

Keywords and phrases: Exponential functions, Hyers-Ulam stability, Hyers-Ulam-Rassias stability.

REFERENCES