OPTIMAL HÖLDER MEAN INEQUALITY
FOR THE COMPLETE ELLIPTIC INTEGRALS

YUN HUA

Abstract. In this paper, we prove that
\[
H_p(\mathcal{K}(r), \mathcal{K}(r')) \geq \mathcal{K}(\sqrt{2}/2)
\]
and
\[
H_q(\mathcal{K}(r), \mathcal{K}(r')) \leq \mathcal{K}(\sqrt{2}/2)
\]
for all \(r \in (0, 1) \) if and only if
\[
p \geq 1 - 4\left[\mathcal{K}(\sqrt{2}/2) \right]^{4/\pi^2} = -3.789 \cdots
\]
and
\[
q \leq \log(2)/\left[\log(\pi/2) - \log(\mathcal{K}(\sqrt{2}/2)) \right] = -4.1805 \cdots
\]
where \(H_p(x, y) \) denotes the Hölder mean of order \(p \) of two positive numbers \(x \) and \(y \), \(r' = \sqrt{1 - r^2} \), and \(\mathcal{K}(r) \) denotes the complete elliptic integral of the first kind, respectively.

Keywords and phrases: Complete elliptic integrals, Hölder mean, inequality.

REFERENCES