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EXISTENCE THEOREMS FOR SOME SYSTEMS OF

QUASI–VARIATIONAL INEQUALITIES PROBLEMS

ON UNIFORMLY PROX–REGULAR SETS
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Abstract. In this paper, some systems of quasi-variational inequality problems are considered
on a class of nonconvex sets, as uniformly prox-regular sets. Some sufficient conditions for the
existence solution of the considered problems are provided. Also, some interesting remarks are
discussed. The results which are presented in this paper are more general, and may be viewed as
an extension, improvement and refinement of the previously known results in the litterateurs.
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