GEOMETRIC CONSTANTS AND CHARACTERIZATIONS OF INNER PRODUCT SPACES

RYOTARO TANAKA, TOMOYOSHI OHWADA AND KICHI-SUKE SAITO

Abstract. Let X be a real normed space, let Ψ_2 denote the set of all convex functions on $[0,1]$ such that $\max\{1-t,t\} \leq \psi(t) \leq 1$, and let Φ_2 denote the set of all concave function on $[0,1]$ such that $\psi(0) = \psi(1) = 1$. For each $\psi \in \Phi_2 \cup \Psi_2$, it is shown that
\[\|x\|^{-1} \|x+y\|^{-1} \leq C_{\psi} \|x-y\| \quad \text{for all nonzero vectors } x, y \in X, \]
where $C_{\psi} = 4 \max \psi(t)$. The case of $\psi = \psi_p$ ($p > 0$), defined as $\psi_p(t) = ((1-t)p + tp)^{1/p}$, is due to Al-Rashed, and is due to Dunkl and Williams when $p = 1$. In particular, it is shown that for certain $\psi \in \Phi_2$, the inequality holds for $C_{\psi} = 2\psi(1/2)$ if and only if X is an inner product space; this generalizes the works of Al-Rashed and Kirk-Smiley.

Keywords and phrases: inner product space, absolute normalized norm, BJ-orthogonality.

REFERENCES