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AN APPLICATION OF JENSEN’S INEQUALITY IN DETERMINING

THE ORDER OF MAGNITUDE OF MULTIPLE FOURIER

COEFFICIENTS OF FUNCTIONS OF BOUNDED φ –VARIATION

BHIKHA LILA GHODADRA

Abstract. For a Lebesgue integrable complex-valued function f defined over the n -dimensional
torus Tn := [0,2π)n , n∈N , let f̂ (k) denote the Fourier coefficient of f , where k = (k1, . . . ,kn)
∈ Zn . The Riemann-Lebesgue lemma shows that f̂ (k) = o(1) as |k| → 0 for any f ∈ L1(Tn) .
However, it is known that, these Fourier coefficients can tend to zero as slowly as we wish. The
definitive results are due to V. Fülöp and F. Móricz for functions of bounded variation, and due
to B. L. Ghodadra for functions of bounded p -variation. In this paper, defining the notion of
bounded φ -variation for a function from [0,2π]n to C in two different ways, we prove that
this is the case for Fourier coefficients of such functions also. Interestingly, in proving our main
results we use the famous Jensen’s inequality for integrals. Our new results with φ(x) = xp

(p � 1) gives our earlier results [Acta Math. Hungar, 128 (4) (2010), 328–343].
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