UPPER BOUNDS FOR THE COVERING NUMBER OF CENTRALLY SYMMETRIC CONVEX BODIES IN \mathbb{R}^n

SENLIN WU

Abstract. The covering number $c(K)$ of a convex body K is the least number of smaller homothetic copies of K needed to cover K. We provide new upper bounds for $c(K)$ when K is centrally symmetric by introducing and studying the generalized α-blocking number $\beta_\alpha^c(K)$ of K. It is shown that when a centrally symmetric convex body K is sufficiently close to a centrally symmetric convex body K', then $c(K)$ is bounded by $\beta_\alpha^c(K')$ from above, where α is a properly chosen number. Related results in Minkowski geometry are also presented.

Keywords and phrases: Banach-Mazur distance, Birkhoff orthogonality, blocking number, covering number, generalized blocking number, Hadwiger’s covering conjecture, radial projection of bisector, shadow boundary.

REFERENCES

