SHARP INEQUALITIES FOR HILBERT TRANSFORM IN A VECTOR–VALUED SETTING

ADAM OSEKOWSKI

Abstract. The paper is devoted to the study of the periodic Hilbert transform H in the vector valued setting. Precisely, for any positive integer N we determine the norm of H as an operator from $L^\infty(T;\ell_N^\infty)$ to $L^p(T;\ell_N^\infty)$, $1 \leq p < \infty$, and from $L^p(T;\ell_1^\infty)$ to $L^1(T;\ell_1^\infty)$, for $1 < p \leq \infty$. The proof rests on the existence of a certain family of special harmonic functions.

Mathematics subject classification (2010): 31B05, 60G44.

Keywords and phrases: Hilbert transform, martingale, best constants.

REFERENCES

