ASYMPTOTIC EXPANSIONS OF INTEGRAL MEAN OF POLYGAMMA FUNCTIONS

CHAO-PING CHEN, NEVEN ELEZOVIĆ AND LENKA VUKŠIĆ

Abstract. Let s, t be two given real numbers, $s \neq t$ and $m \in \mathbb{N}$. We determine the coefficients $a_j(s,t)$ in the asymptotic expansion of integral (or differential) mean of polygamma functions $\psi^{(m)}(x)$:

$$\frac{1}{t-s} \int_{s}^{t} \psi^{(m)}(x+u) \, du \sim \psi^{(m)}(x) \left(\sum_{j=0}^{m} \frac{a_j(s,t)}{x^j} \right), \quad x \to \infty.$$

We derive the recursive relations for polynomials $a_j(t, s)$, and also as polynomials in intrinsic variables $\alpha = \frac{1}{2}(s+t-1)$, $\beta = \frac{1}{4} [1 - (t-s)^2]$. We derive also the main properties of these polynomials and as a consequence the asymptotic formula for shifted variables.

Mathematics subject classification (2010): Primary 33B15; Secondary 41A60.

Keywords and phrases: Gamma function, psi function, polygamma functions, Bernoulli numbers and polynomials, asymptotic expansion.

REFERENCES

