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ON THE ORDER OF MAGNITUDE OF FOURIER TRANSFORM

BHIKHA LILA GHODADRA AND VANDA FÜLÖP

Abstract. For a Lebesgue integrable complex-valued function f defined on R , let f̂ be its
Fourier transform. The Riemann-Lebesgue lemma says that f̂ (t)→ 0 as |t|→∞ . But in general,
there is no definite rate at which the Fourier transform tends to zero. In fact, the Fourier transform
of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to
know for functions of which subclasses of L1(R) there is a definite rate at which the Fourier
transform tends to zero. In this paper, we determine this rate for functions of bounded variation
on R . We also determine such rate of Fourier transform for functions of bounded variation in
the sense of Vitali defined on R

N (N ∈ N) .
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