Abstract. Let $T = \begin{bmatrix} X & Y \\ 0 & Z \end{bmatrix}$ be an n-square matrix, where X, Z are r-square and $(n - r)$-square, respectively. Among other determinantal inequalities, it is proved that

$$\det (I_n + T^* T) \geq \det (I_r + X^* X) \cdot \det (I_{n-r} + Z^* Z)$$

with equality if and only if $Y = 0$.

Mathematics subject classification (2010): 15A45.

Keywords and phrases: Determinantal inequality, block triangular matrices.

REFERENCES