GENERALIZED INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS

M. Emin Özdemir and Alper Ekinci

Abstract. In this paper, we prove some general inequalities for convex functions and give Ostrowski, Hadamard and Simpson type results for a special case of these inequalities.

Mathematics subject classification (2010): 26D15, 26D10.

Keywords and phrases: Convex functions, Hermite-Hadamard inequality, Simpson's inequality, powermean inequality, Ostrowski's inequality; Hölder's inequality.

REFERENCES

- B. G. PACHPATTE, On some inequalities for convex functions, RGMIA Research Report Collection 6, E (1) (2003).
- [2] G. H. TOADER, On a generalization of the convexity, Mathematica 30, 53 (1988), 83-87.
- [3] H. KAVURMACI, M. AVCI AND M. E. ÖZDEMIR, New inequalities of Hermite-Hadamard type for convex functions with applications, Journal of Inequalities and Applications 86, 1 (2011).
- [4] J. PEČARIĆ, S. VAROŠANEC, Harmonic polynomials and generalization of Ostrowski inequality with Applications in Numerical Integration, Nonlinear Analysis Series A: Theory, Methods and Applications 47, 1 (2011), 2365–2374.
- [5] M. Z. SARIKAYA, E. SET AND M. E. ÖZDEMIR, On new inequalities of Simpson type for convex functions, RGMIA Research Report Collection 13, 2 (2) (2010).
- [6] S. KOVAČ, J. PEČARIĆ, Weighted version of general integral formula of Euler type, Math. Inequal. Appl. 13, 3 (2010), 579–599.
- [7] S. S. DRAGOMIR, R. P. AGARWAL, Two inequalities for differentiable mappings and applications, Applied Mathematics Letters 11, 5 (1998), 91–95.
- [8] U. S. KIRMACI, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comp. 147, 1 (2004), 137–146.

