AN INEQUALITY FOR t–GEOMETRIC MEANS

DINH TRUNG HOA

Abstract. Let A_i, B_i ($i = 1, \ldots, m$) be positive definite matrices, $r \geq 1$, $t \in [0,1]$ and $s > 0$. Then for any unitarily invariant norm $\| \cdot \|$

$$\| \sum_{i=1}^{m} (A_i \#_t B_i)^r \| \leq \| (\sum_{i=1}^{m} A_i)^{rt^s/2} (\sum_{i=1}^{m} B_i)^{rt^s/2})^{1/s} \|$$

$$\leq \| (\sum_{i=1}^{m} A_i)^{(1-t)rt^s/2} (\sum_{i=1}^{m} B_i)^{rt^s/2})^{1/s} \|.$$

A recent result of Audenaert [2] immediately follows from the above inequalities.

Keywords and phrases: t-geometric mean, positive definite matrices, log-majorization, unitarily invariant norms.

REFERENCES

