DETERMINANT INEQUALITIES FOR HADAMARD PRODUCT OF POSITIVE DEFINITE MATRICES

JUN-TONG LIU, QING-WEN WANG AND FANG-FANG SUN

Abstract. Let \(A_i, i = 1, \ldots, m \), be \(n \times n \) positive definite matrices whose diagonal blocks are \(n_j \)-square matrices \(A_i^{(j)} \), \(j = 1, \ldots, k \). Choi recently proved
\[
\det \left(\sum_{i=1}^{m} A_i^{-1} \right) \geq \det \left(\sum_{i=1}^{m} (A_i^{(1)})^{-1} \right) \cdots \det \left(\sum_{i=1}^{m} (A_i^{(k)})^{-1} \right).
\]
We first give a new proof of this inequality, and then present an analogous inequality involving the Hadamard product
\[
\det \left(\prod_{i=1}^{m} \circ A_i^{-1} \right) \geq \det \left(\prod_{i=1}^{m} \circ (A_i^{(1)})^{-1} \right) \cdots \det \left(\prod_{i=1}^{m} \circ (A_i^{(k)})^{-1} \right).
\]

Keywords and phrases: Determinant inequality, Hadamard product, determinants of block matrix, positive definite matrix.

REFERENCES