CHARACTERIZATION OF OPERATOR CONVEX FUNCTIONS BY CERTAIN OPERATOR INEQUALITIES

HIROYUKI OSAKA, YUKIHIRO TSURUMI AND SHUHEI WADA

Abstract. For \(\lambda \in (0,1) \), let \(\psi \) be a non-constant, non-negative, continuous function on \((0,\infty)\) and let \(\Gamma_\lambda(\psi) \) be the set of all non-trivial operator means \(\sigma \) such that an inequality
\[
\psi(A \nabla_\lambda B) \leq \psi(A) \sigma \psi(B)
\]
holds for all \(A, B \in B(H)^{++} \). Then we have:

1. \(\psi \) is a decreasing operator convex function if and only if
 \[
 \Gamma_\lambda(\psi) = \{ \sigma \mid !_\lambda \leq \sigma \leq \nabla_\lambda \}.
 \]

2. \(\psi \) is an operator convex function which is not a decreasing function if and only if
 \[
 \Gamma_\lambda(\psi) = \{ \nabla_\lambda \}.
 \]

The first result is a weighted version of Ando and Hiai’s characterization of an operator monotone decreasing function and these two results imply each other.

Keywords and phrases: Operator means, operator monotone functions, operator convex functions.

REFERENCES