TWO TRACE INEQUALITIES FOR OPERATOR FUNCTIONS

TRUNG HOA DINH, MINH TOAN HO, CONG TRINH LE AND BICH KHUE VO

Abstract. In this paper we show that for a non-negative operator monotone function \(f \) on \([0, \infty)\) such that \(f(0) = 0 \) and for any positive semidefinite matrices \(A \) and \(B \),

\[
\text{Tr}((A - B)(f(A) - f(B))) \leq \text{Tr}(|A - B| f(|A - B|)).
\]

When the function \(f \) is operator convex on \([0, \infty)\), the inequality is reversed.

Keywords and phrases: Unitarily invariant norms, trace inequalities, operator monotone functions, operator convex functions.

REFERENCES

[1] T. ANDO, Comparison of norms \(|||f(A) - f(B)||| \) and \(|||f(|A - B|)||| \), Mathematische Zeitschrift, 197, 3 1988, 403–409.